以下に、論文業績の一部を抜粋して掲載いたします。
これ以外の論文業績および研究業績は、researchmapをご覧ください。
91. Pulmonary aspergilloma and allergic bronchopulmonary aspergillosis following the 2018 heacy rain event in western Japan. Intern Med. 2022; 61(3): 379-383. 《PubMed》
90. No episodic angioedema with eosinophilia during sublingual immunotherapy with house dust mite extract. Allergol Int. 2022; 71(2): 254-255. 《PubMed》
89. BEXAS study. Nationwide survey of refractory asthma with bronchiectasis by inflammatory subtypes. Respir Res. 2022; 23(1): 365. 《PubMed》
88. Intravenous immunoglobulin for acute exacerbation of fibrotic idiopathic interstitial pneumonias. Sarcoidosis Vasc Diffuse Lung Dis. 2022; 39 (4): e2022038. 《PubMed》
87. Neuropeptide Y antagonizes development of pulmonary fibrosis through IL-1β inhibition. Am J Respir Cell Mol Biol. 2022; 67 (6): 654-664. 《PubMed》
86. Use of a highly sensitive lung cancer compact panel to detect KRAS G12D in the wash fluid from a lung tumor: A case report. Thorac Cancer. 2022; 13 (11): 1735-1738. 《PubMed》
85. Fulminant respiratory failure causesd by anti-asparaginyl tRNA synthase (Anti-KS) antibody syndrome-related interstitial lung disease. Intern Med. 2022; 61 (22): 3409-3414. 《PubMed》
84. Identification of targetable kinases in idiopathic pulmonary fibrosis. Respir Res. 2022; 23 (1): 20. 《PubMed》
83. Protective effects of neuropeptide Y against elastase-induced pulmonary emphysema. Am J Physiol Lung Cell Mol Physiol. 2022; 322 (4):L539-L49 《PubMed》
82. Essential role of IL-23 in the development of acute exacerbation of pulmonary fibrosis Am J Physiol Lung Cell Mol Physiol.2021;321:L925-L94 《PubMed》
81. Loss of IL-33 enhances elastase-induced and cigarette smoke extract-induced emphysema in mice. Respir Res. 2021;22:150. doi: 10.1186/s12931 《PubMed》
80. The effects of inhaling hydrogen gas on macrophage polarization, fibrosis, and lung function in mice with bleomycin-induced lung injury. BMC Pulm Med. 2021;21:339 《PubMed》
79. The heterodimer complex composed of S100A8 and S100A9 are potent therapeutic targets for idiopathic pulmonary fibrosis. Journal of Molecular Medicine 2021;99(1):131-145. 《PubMed》
78. Reactive Oxygen Species and Antioxidative Defense in Chronic Obstructive Pulmonary Disease. Antioxidants (Basel). 2021;10(10):1537 《PubMed》
77. Nintedanib can be used safely and effectively for idiopathic pulmonary fibrosis with predicted forced vital capacity ≤ 50%: A multi-center retrospective analysis. PLoS One. 2020;15(8):e0236935 《PubMed》
76. Deterioration of high-resolution computed tomography findings predicts disease progression after initial decline in forced vital capacity in idiopathic pulmonary fibrosis patients treated with pirfenidone. Respir Investig 2020;58:185-189. 《PubMed》
75. Managing Lung Cancer with Comorbid Interstitial Pneumonia. Intern Med. 2020 Jan 15;59(2):163-167 《PubMed》
74. Solitary pulmonary nodules caused by Mycobacterium avium complex. Respir Investig 2019;57(6):566-573. 《PubMed》
73. A retinoid X receptor partial agonist attenuates pulmonary emphysema and airway inflammation. Respir Res. 2019;20(1):2. 《PubMed》
72. Requirement for neuropeptide Y in the development of type-2 responses and allergen-induced airway hyperresponsiveness and inflammation. Am J Physiol Lung Cell Mol Physiol. 2019;316(3):L407-L417 《PubMed》
71. Cause of pleuroparenchymal fibroelastosis following allogeneic hematopoietic stem cell transplantation. Respiratory Investigation 2019;57(4):321-324 《PubMed》
70. Alpha-1-antitrypsin deficiency. Human Pathobiochemistry. From Clinical Studies to Medical Mechanisms. Springer Nature Singapore Pte Ltd. p169-177, 2019
69. Severe asthma concomitant with allergic bronchopulmonary aspergillosis successfully treated with mepolizumab. Allergol Int. 2018;67(4):521-52 《PubMed》
68. Clinical characteristics of Japanese candidates for lung transplant for interstitial lung disease and risk factors for early death while on the waiting list. Respir Investig. 2017;55(4):264-269. 《PubMed》
67. Lavender essential oil and its main constituents inhibit expression of TNF-α-induced cell adhesion molecules in endothelial cells. Acta Med Okayama 2017;71(6):493-503. 《PubMed》
66. Protective Effects of Bisoprolol Against Acute Exacerbation in Moderate-to-Severe Chronic Obstructive Pulmonary Disease. Acta Med Okayama 2017;71(5):453-457. 《PubMed》
65. Long-term effects of beta-blocker use on lung function in Japanese patients with chronic obstructive pulmonary disease. Int J COPD. 2017;12:1119-1124 《PubMed》
64. Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma. Respir Res. 2017;18:23 《PubMed》
63. IL-23 is essential for the development of elastase-induced pulmonary inflammation and emphysema. Am J Respir Cell Mol Biol 2016;55:697-707 《PubMed》
62. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation. Immune Netw. (3):165-75. 2016 《PubMed》
61. Contrasting Roles for the Receptor for Advanced Glycation End-Products on Structural Cells in Allergic Airway Inflammation versus Airway Hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 309(8):L789-800, 2015 《PubMed》
60. Emphysema requires the receptor for advanced glycation end products triggering on structural cells. Am J Respir Cell Mol Biol 52(4):482-91, 2015. 《PubMed》
59. Effect of a cysteinyl leukotriene receptor antagonist on experimental emphysema and asthma combined with emphysema. Am J Respir Cell Mol Biol. 50(1):18-29, 2014. 《PubMed》
58. Septic pulmonary embolism induced by dental infection. Acta Med Okayama. 2013 ;67(4):253-8, 2013 《PubMed》
57. Inhibition of neutroil elastase attenuates airway hyperresponsiveness and inflammation in a mouse model of secondary allergen challenge: neutroil elastase inhibition attenuates allergic airway responses. Respir Res.14(1):8, 2013. 《PubMed》
56. IL-17A is essential to the development of elastase-induced pulmonary inflammation and emphysema in mice. Respir Res. 14(1):5 , 2013. 《PubMed》
55. Requirement for CCR5 in the development of allergen-induced airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol. 45(6):1248-55, 2011. 《PubMed》
54. Blocking the leukotriene B4 receptor 1 inhibits late ase airway responses in established disease. Am J Respir Cell Mol Biol. 45:851-7, 2011. 《PubMed》
53. Effects of combination therapy with montelukast and carbocysteine in allergen-induced airway hyperresponsiveness and airway inflammation. Br J Pharmacol. 160:1399-407, 2010. 《PubMed》
52. Plasticity of Invariant NKT Cell Regulation of Allergic Airway Disease Is Dependent on IFN-g Production. J Immunol. 185:253-62, 2010. 《PubMed》
51. Experimental pulmonary granuloma mimicking sarcoidosis induced by Propionibacterium acnes in mice. Acta Med Okayama. 64:75-83, 2010 《PubMed》
50. Differential Effects of Dendritic Cell Transfer on Airway Hyperresponsiveness and Inflammation. Am J Respir Cell Mol Biol. 41:271-80, 2009. 《PubMed》
49. Takeda K, Dow SW, Miyahara N, Kodama T, Koya T, Taube C, Joetham A, Park JW, Dakhama A, Kedl RM, Gelfand EW. Vaccine-induced CD8+ T cell-dependent suppression of airway hyperresponsiveness and inflammation. J Immunol. 183:181-90, 2009. 《PubMed》
48. Leukotriene B4 Release from Mast Cells in IgE-Mediated Airway Hyperresponsiveness and Inflammation. Am J Respir Cell Mol Biol. 40:672-82, 2009. 《PubMed》
47. Mitogen-activated protein kinase/extracellular signal-regulated kinase kinases 1/2-dependent pathways are essential for CD8+ T cell-mediated airway hyperresponsiveness and inflammation. J Allergy Clin Immunol. 123:249-57, 2009. 《PubMed》
46. AHR-Enhancing gamma-delta T Cells Develop in Normal Untreated Mice and Fail to Produce IL-4/13, Unlike TH2 Cells and NKT Cells. J Immunol. 182:2002-10, 2009. 《PubMed》
45. CD8+ T cells play a key role in development of allergic lung inflammation. Allergy frontiers: Classification and Pathomechanisms. Springer Japan. p167-178, 2009.
44. Leukotriene B4 receptor-1 (BLT1) expression on dendritic cells is required for the development of Th2 responses and allergen-induced airway hyperresponsiveness. J Immunol. 181:1170-8, 2008. 《PubMed》
43. Evidence That CD8+ Dendritic Cells Enable the Development of gamma-delta T Cells That Modulate Airway Hyperresponsiveness. J Immunol. 181:309-19, 2008. 《PubMed》
42. Plasticity of regulatory T cells: subversion of suppressive function and conversion to enhancement of lung allergic responses. J Immunol. 180:7117-24, 2008. 《PubMed》
41. Corticosteroids Enhance CD8+ T Cell-Mediated Airway Hyperresponsiveness and Allergic Inflammation by Upregulating Leukotriene B4 Receptor-1. J Allergy Clin Immunol. 121:864-71, 2008. 《PubMed》
40. Contribution of allergen-specific and non-specific nasal responses to early- and late-ase nasal responses. J Allergy Clin Immunol. 121:718-24, 2008. 《PubMed》
39. Estrogen determines gender differences in airway responsiveness after allergen exposure. Am J Respir Cell Mol Biol. 38:501-8, 2008. 《PubMed》
38. The role of leukotriene B4 in allergic diseases. Allergology International. 57:291-8, 2008 《PubMed》
37. IFN-gamma production during initial infection determines the outcome of re-infection with RSV. Am J Respir Crit Care Med. 177:208-18, 2007. 《PubMed》
36. Activation of naturally occurring lung CD4+CD25+ regulatory T cells requires CD8 and MHC I interaction. Proc Natl Acad Sci U S A. 104:15057-62, 2007. IF: 9.674 《PubMed》
35. CD8+ T cell-mediated airway hyperresponsiveness and inflammation is dependent on CD4+IL-4+ T cells. J Immunol. 179:2787-96. 2007. 《PubMed》
34. Airway hyperresponsiveness through synergy of gamma-delta T Cells and NKT Cells. J Immunol. 179:2961-8, 2007. 《PubMed》
33. IL-10-treated dendritic cells decrease airway hyperresponsiveness and airway inflammation. J Allergy Clin Immunol. 119:1241-50, 2007. 《PubMed》
32. Arhgef1 is Required by T Cells for the Development of Airway Hyperreactivity and Inflammation. Am J Respir Crit Care Med. 176:10-9, 2007. 《PubMed》
31. Naturally-Occurring Lung CD4+CD25+ T-Cell Regulation of Airway Allergic Responses Depends on IL-10 Induction of TGF-beta. J Immunol. 178:1433-42, 2007. 《PubMed》
30. Critical role of the Fc receptor gamma-chain on APCs in the development of allergen-induced airway hyperresponsiveness and inflammation. J Immunol. 178:480-8, 2007. 《PubMed》
29. IL-2 and IL-18 attenuation of airway hyperresponsiveness requires STAT4, IFN-gamma, and natural killer cells. Am J Respir Cell Mol Biol. 36:324-32, 2007. 《PubMed》
28. The leukotriene B4 receptor (BLT1) is required for effector CD8+ T cell-mediated, mast cell-dependent airway hyperresponsiveness. J Immunol. 176:3157-64, 2006. 《PubMed》
27. Factor B of the alternative complement pathway regulates development of airway hyperresponsiveness and inflammation. Proc Natl Acad Sci U S A. 103:8084-9, 2006. 《PubMed》
26. IL-13 is Essential to the Late ase Response in Allergic Rhinitis. J Allergy Clin Immunol. 118:1110-6, 2006.《PubMed》
25. RANTES (CCL5) regulates airway responsiveness following repeated allergen challenge. Am J Respir Cell Mol Biol. 35:147-54, 2006. 《PubMed》
24. Syk Activation in Dendritic Cells is Essential for Airway Hyperresponsiveness and Inflammation. Am J Respir Cell Mol Biol. 34:426-33, 2006. 《PubMed》
23. Importance of Myeloid Dendritic Cells in Persistent Airway Disease After Repeated Allergen Exposure. Am J Respir Crit Care Med. 173:42-55, 2006. 《PubMed》
22. Role of the LTB4/BLT1 pathway in allergen-induced airway hyperresponsiveness and inflammation. Allergology International. 55:91-97, 2006 《PubMed》
21. Physiological Assessment of Allergic Rhinitis in Mice: Role of the High Affinity IgE Receptor (FcgammaRI). J Allergy Clin Immunol. 116:1020-7, 2005. 《PubMed》
20. S-carboxymethylcysteine normalises airway responses in sensitized and challenged mice. Eur Respir J. 26:577-85, 2005. 《PubMed》
19. Requirement for the Leukotriene B4 Receptor-1 in Allergen-Induced Airway Hyperresponsiveness. Am J Respir Crit Care Med. 172:161-7, 2005. 《PubMed》
18. The Enhancement or Prevention of Airway Hyperresponsiveness during Reinfection with Respiratory Syncytial Virus Is Critically Dependent on the Age at First Infection and IL-13 Production. J Immunol. 175:1876-83, 2005
17. Leukotriene B4 Receptor-1 Is Essential for Allergen-Mediated Recruitment of CD8+ T Cells and Airway Hyperresponsiveness. J Immunol. 174:4979-84, 2005. 《PubMed》
16. Airway hyperresponsiveness in the absence of CD4+ T cells after primary but not secondary challenge. Am J Respir Cell Mol Biol. 33:89-96, 2005.
15. Alteration of Airway Sensory Neuropeptide Expression and Development of Airway Hyperresponsiveness Following Respiratory Syncytial Virus Infection. Am J Physiol Lung Cell Mol. 288:L761-70, 2005. 《PubMed》
14. Effector CD8(+) T cells mediate inflammation and airway hyper-responsiveness. Nature Med. 10:865-9, 2004. 《PubMed》
13. The Role of Virus-specific Immunoglobulin E in Airway Hyperresponsiveness. Am J Respir Crit Care Med. 170:952-9, 2004. 《PubMed》
12. Mast cells, FcepsilonRI, and IL-13 are required for development of airway hyperresponsiveness after aerosolized allergen exposure in the absence of adjuvant. J Immunol. 172:6398-406, 2004. 《PubMed》
11. Contribution of antigen-primed CD8+ T cells to the development of airway hyperresponsiveness and inflammation is associated with IL-13. J Immunol. 172:2549-58, 2004. 《PubMed》
10. Interleukin-1 receptor antagonist attenuates airway hyperresponsiveness following exposure to ozone. Am J Respir Cell Mol Biol. 30:830-6, 2004. 《PubMed》
9. Respiratory syncytial virus-induced airway hyperresponsiveness is independent of IL-13 compared with that induced by allergen. J Allergy Clin Immunol. 112:1078-87, 2004. 《PubMed》
8. Surfactant Protein D Regulates Airway Function and Allergic Inflammation through Modulation of Macroage Function. Am J Respir Crit Care Med. 168:783-9, 2003. 《PubMed》
7. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia. Circ J. 66:1087-95, 2002 《PubMed》
6. Large scale cohort study of the relationship between serum cholesterol concentration and coronary events with low-dose simvastatin therapy in Japanese patients with hypercholesterolemia and coronary heart disease: secondary prevention cohort study of the Japan Lipid Intervention Trial (J-LIT). Circ J. 66:1096-100, 2002 《PubMed》
5. Respiratory variation in superior vena cava flow in patients with chronic obstructive pulmonary disease: estimation of pulmonary hypertension using Doppler flow index. J Am Soc Echocardiogr. 15(10 Pt 2):1165-9, 2002. 《PubMed》
4. The role of IL-2 and IL-18 in bronchial asthma. Recent Res. Devel. Allergy and Clinical Immunol. 3:65-71, 2002
3. Effects of short-term pulmonary rehabilitation on exercise capacity and quality of life in patients with chronic obstructive pulmonary disease. Acta Med Okayama. 54:179-84, 2000 《PubMed》
2. Cardiorespiratory responses during cycle ergometer exercise with different ramp slope increments in patients with chronic obstructive pulmonary disease. Intern Med. 39:15-9, 2000. 《PubMed》
1. Design and baseline characteristics of a cohort study in Japanese patients with hypercholesterolemia: the Japan lipid invention trial (J-LIT). Current Therapeutic Research. 61: 219-243, 2000.
あなたもジンドゥーで無料ホームページを。 無料新規登録は https://jp.jimdo.com から